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Abstract

Over the next decade high performance computing resouridesach the petaflops scale.
Coupled with current and planned experiments at RHIC, FAHR] the LHC, these computa-
tional resources will offer significant opportunities foiletadvancement of our understanding
of the properties of strongly interacting matter at highpenatures and densities. We describe
expected quantitative and qualitative gains in (1) our Kedge of the equation of state at zero
and nonzero density, (2) the phase diagram of QCD at zero @mzkro density, and (3) the
structure of the plasma phase, including excited statedrandport properties. We describe
several key computational projects for achieving thesagyand estimate the computational
cost in units of teraflops-years (TF-y).

1 QCD at nonzerotemperature and density

The properties of strongly interacting matter at nonzeroperature and baryon number den-
sity are being studied in heavy ion experiments at the Regéit Heavy lon Collider (RHIC) at
Brookhaven National Laboratory (BNL). In the near futuredl experiments will be extended to
even higher energies and temperatures at the Large HadlbdeC@_HC). By contrast, at BNL
and at the future European heavy ion facility FAIR, a serieaew low energy experiments is
planned that will allow us to study such matter at moderatgtratures, but high baryon number
density. The former physical conditions occurred in théyaamiverse; the latter may approximate
the environment in the interior of dense stellar objecthsagneutron stars.

Under extreme conditions of high temperature or high baryamber density strongly inter-
acting matter is expected to have a rich phase structuredasated in Figure 1. Quantifying
the drastic changes in the interaction among elementaticiegrthat go along with such phase
changes requires large scale numerical calculations.

Numerical studies of lattice QCD can provide a wealth of nefwrimation about properties of
strongly interacting matter. Lattice QCD is likely to haveaticularly strong impact on current
and future experimental studies as well as the phenomeigalagodeling of hot and dense matter
in the following three areas:

e Lattice calculations can provide detailed informationaimasic bulk thermodynamic prop-
erties: the equation of state, energy and entropy denbiyptessure, and the velocity of
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Figure 1: Phase diagram of strongly interacting matter

sound and basic structural properties: plasma modes amptret coefficients. These quan-
tities are crucial input to the analysis of many experimeabservables that characterize
the formation of hot and dense matter in heavy ion collisi@m&l they are crucial for the
hydrodynamic modeling of its time evolution [1, 2]. For exalma precise knowledge of the
equation of state is needed for a quantitative descriptidgheoexpansion process and in the
theoretical modeling of almost all experimental obsergabincluding the hydrodynamic
modeling of recent findings at RHIC, such as elliptic flow M§cosity [4] and quarkonium
suppression [5] .

Lattice calculations currently provide the only ab inigpiantitative method for determining
the phase diagram of strongly interacting matter (Fig. Djictv, aside from the case of van-
ishing baryon number density (vanishing quark chemica¢piddl), is largely unexplored.

In particular, confirming the existence of a second ordespheansition point in the phase
diagram and subsequently determining its location acelyraan only be achieved through
demanding numerical calculations. Experiments at RHICFKI® are under consideration
that would search for this critical point. Quantitativegiczgions from lattice calculations are
needed.

Lattice simulations of strongly interacting matter areited to thermodynamic equilibrium

and small deviations from it. Effective models help us depehsight and extend our un-
derstanding of the dynamical processes occurring in heavyollisions. Lattice calcula-

tions are essential for validating and constraining a Wanémodels ranging from hadronic
resonance gas models at low temperature and quasi-pamadels at high temperature to
perturbative approaches at very high temperature [6].



2 Quark-gluon plasma equation of state

Lattice methods for determining the equation of state (E8)well developed, but numerically
intensive. Our present knowledge of the continuum EoS camitésstatistical errors of order 15%
and probably comparable systematic errors. A combined efiarder 5% at a physical light quark
mass would provide a solid foundation for hydrodynamicatlelmg. This goal is easily feasible
with petaflop resources.

The extrapolation of lattice results to the continuum reeglicarrying out calculations at a
series of small enough lattice spaciragthat the extrapolation is well controlled. For the Eo0S,
pushing to smaller lattice spacing is expensive but feasibb compute the energy density, pres-
sure, and entropy requires a vacuum subtraction. Thatessithulation aff > 0 produces an
unrenormalized value of the thermodynamic quantity, aredotfnysically useful value is obtained
by subtracting the corresponding zero temperature valie pfocedure is straightforward, but the
subtraction entails a loss of significance that worsenslhaps the lattice spacingis reduced. In
fact, the fractional difference decreasestisSince the numerical simulation estimates the quanti-
ties in the subtraction statistically with an error propamal to 1/+/N, the statistical sample si2¢
must grow as 8 to achieve the same accuracy in the result. The cost of dbtginsingle statis-
tically independent sample also grows with a high negatoweqy ofa. With these considerations,
we estimate, conservatively, a net cost that scales Hs Clearly, we require a careful analysis of
discretization errors to make the most of simulation resattsmalk.

We divide the temperature scale (in units of the crossovapégaturel;) into three qualita-
tively different regions, each with its distinct numerid&mands and impact on modeling.

- Low temperature regionT( < 0.95T;). Resonance gas models are often used to model
strongly interacting matter in this range [7]. A reliablétiee calculation is needed to vali-
date these models [8, 9].

- Transition region (®5Tc < T < 1.5T¢). The crossover is strongly influenced by a nearby
phase transition that restores chiral symmetry. The plasreongly interacting and only
nonperturbative methods are applicable.

- High temperature region @T. < T). In this region one may hope to use resummed pertur-
bation theory to characterize the plasma, but its relighigi unknown.

Figure 2 shows results for the EoS based on recent calcogatioth improved staggered
fermions. On the left we show the difference of energy dgraitd three times the pressure
[10, 11], which is sometimes called the interaction measliraummarizes our current knowl-
edge of the EoS at low and high temperature at vanishing da¢mpotential. On the right we
compare the ratio of pressurg)(to energy densityg] at zero baryon number and at nonzero
baryon number along curves of fixed entroy per quark (or baryon)Ng = Ng/3) [12]. Here
the temperature is given in units of the crossover tempegdtu In the hydrodynamic modeling
of the expansion of dense matter created in a heavy ion ioollian accurate equation of state is
of particular importance.
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Figure 2: The equation of state of strongly interacting eratt

It is apparent from these figures that the qualitative festwf the transition from the low to
high temperature regime of QCD are quite well characteribatithat much more detailed studies
are needed in all three temperature regimes to achieveotanthe 5% level. Neither the approach
to the perturbative regime at high temperature nor the stersty with resonance gas physics at
low temperature is established on a quantitative level.uitions with resources on the petaflop
scale could have a tremendous impact here.

In the following subsections we discuss a strategy to reaehgbal of 5% accuracy in the
EoS at the physical light quark mass in each of the three teatyre regimes listed above. In
each regime we set lattice parameters to cover approxiyndelsame range of lattice sizes, so a
uniform extrapolation to the continuum will be possible.

Achieving this goal requires assessing and gaining cowtrautoff effects (artifacts of the
lattice approximation) as the lattice spacing is reduced discuss two popular ways to put quarks
(fermions) on the lattice, namely “staggered” fermions ammain wall” fermions with different
sources of artifacts.

Staggered fermions suffer from a phenomenon called spdomgsling. Uncorrected, the re-
sulting theory has four times as many quark species as deditee standard expedient takes the
fourth root of the “fermion determinant”, which approxirebt corrects the multiplicity of quark
species in the statistical ensemble. This formulation dlstorts the desired chiral symmetry of
the theory. The error in the approximation is widely belgte vanish in the continuum limit, but
there is no proof [13].

The domain wall formulation does not suffer from speciestdiog. In addition to the usual
lattice spacing, its lattice artifacts are controlled byaagmetels, which determines the degree
to which the desired chiral symmetry is well approximatetie fuality of that approximation is
measured by the “residual mass” of the lightest quark. Thiglval mass should be small, which
requires makind.s large and increases the computational cost.

For a given lattice spacing and set of physical parametéigheguality domain wall simulation
is far more expensive than the corresponding staggereddersimulation. Thus we currently
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have far more detailed results from staggered fermions tlaadargest part of the computations
we envision in this report are for staggered fermions. Nogless, well-chosen simulations with
domain-wall fermions are essential for checking resutisnfistaggered fermions, particularly for
guantities and phenomena sensitive to chiral symmetry.

In the subsections below we give estimates of the computicost to achieve the desired
accuracy. The estimates are summarized in Table 1. A brgéeation of some of the simulation
parameters is in order. The simulation temperature is ohétexd froma, the lattice spacing, and
N;, the extent of the lattice in the Euclidean time directiatading toT = 1/(Nya). Thus at any
given temperature, the approach to the continuum requileagerN;.

2.1 Resonancegasregime: T < 0.95T¢

Contemporary simulations in the important hadronizatemperature range of 150 - 200 MeV
have been done at best at a fairly coarse lattice spacingoot &5 fm [10, 14, 15]. Here signifi-
cant artifacts of the lattice formulation are likely to appdheir nature depends on the formulation.
With the most extensively studied staggered fermion foatioh, the meson spectrum is plagued
by the increasing distortion of “taste multiplets”. Where thadron spectrum is inaccurate, one
may question its description of the hadronic medium for terafures nearing the crossover

A simulation atN; = 12 corresponds to a lattice spacigf 0.09—0.12 fm in the temperature
range 140- 180 MeV. Measurements of the hadronic spectrum in this rahgev the expected
scaling with decreasing. Based on ongoing simulations bt = 8, we estimate a cost of 85
TF-y to carry out a comparable simulationNyt= 12 for T < T.. Such a simulation, combined
with existing and ongoing simulations, should make it poigsto reduce the uncertainty in the
continuum extrapolation in this important region to 5%.

2.2 Transition temperature and thermodynamics in its vicinity: 0.95T; <
T < 1.5T;

This is the dramatic crossover region. The crossover is ha eta nearby phase transition that
restores chiral symmetry. Since the equation of gtagehas a minimum at or close to the transition
temperaturelc, the velocity of sound is small in this regime. The expanding cooling dense
matter created in a heavy ion collision thus spends a long tmthis temperature regime. A
determination of the transition temperature and the cparding energy and entropy densities is
of great importance.

In Fig. 3 we show a collection of recent results for the traasitemperature as function of the
light pseudo-scalar (pion) mass. Although there is goodalvagreement the transition temper-
ature still is not not known to better than 10%. Reducing therebelow 5% requires additional
calculations and the cross-check of results obtained vifittrent fermion actions.
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Figure 3: The transition temperature in (2+1)-flavor QCD aspiled in [11] obtained with dif-
ferent staggered fermion actions (asqtad [16], p4fat3, [4fout [18]) and results obtained in two-
flavor QCD with improved Wilson fermions (clover fermiond)9, 20]. Shown is the transition
temperature in terms of a scale parametgy ¢xtracted from the slope of the static quark poten-
tial, versus the lightest pseudo-scalar meson mass, afgessed in units ofsg. Open symbols
correspond to results on lattices with temporal extént 4. Filled symbols correspond tdy = 6

or larger.

A key question is whether the distortion of chiral symmetryanzero lattice spacing in the
staggered fermion formulation modifies the crossover teatpee and the peak in chiral suscep-
tibility. To answer this question requires good control loé tcontinuum limit in the staggered
fermion simulation and a companion calculation with chitamain wall fermions.

In this region it should suffice to carry out the staggeredifen simulation alN; = 10. To-
gether with results from existing and ongoing calculatiahs; = 6 and 8, we should be able to
do a controlled extrapolation to the continuum. A calcwolatat five temperatures in this critical
region would cost 75 TF-y.

The domain wall formulation does not have the spectraldattirtifacts of staggered fermions.
However, it is far more computationally expensive. The gyalf its chiral behavior is measured
by the “residual quark mass” parameter. Mit= 10 in the transition region, we know from other
tests that this quantity is small enough to assure goodaaritthe chiral behavior. Our goal is to
check the determination of the crossover temperalyend the strength of the peak in the chiral
susceptibility. A calculation at seven temperatures ia thitical region on a 48x 10 lattice with
Ls = 32 at twice the physical light quark mass would be sufficient would cost 100 TF-y.

2.3 Perturbation theory and the high temperature limit of QCD: 1.5T; <
T < 5T¢

Heavy ion experiments at the LHC will generate matter witiiahenergy densities as high as
1 TeV/fm?, which may correspond to temperatures as higl886— 1000 MeV. Even at these high
temperatures, straightforward high-temperature peatiob theory is not sufficiently convergent
to give a quantitative prediction. Refined resummationnepes have been developed to deal



with this problem. These techniques have been quite suatésghe purely gluonic sector of
QCD but are poorly developed for QCD with dynamical quarks.nfake progress here requires
accurate numerical results from lattice calculations.

In this temperature regime quark mass thresholds for th@rcaarks become relevant. Pertur-
bative calculations suggest that the charm quark contobud the EoS can be significant already
at temperatures of a few times the transition temperatutf [d order to take into account the
contribution of heavy quarks some progress can be made iarechad approximation to the heavy
qguark sector. If one aims, however, at accuracies on the éaept level, a dynamical simulation
will be needed.

Although including heavy quarks in a dynamical simulatienelatively cheap, a fine lattice
is needed to resolve their contribution accurately. In otdencorporate the contribution of a
charm quark in a dynamical simulation, the inverse lattigaceng should be much larger than
the heavy quark mass.. This requires simulations on lattices with temporal ektén= 10 or
evenN; = 12. For example, on a lattice with temporal extBiat= 10, the inverse lattice spacing
atT ~ 2T, ~ 0.4 GeV isa~1 = 4 GeV. Simulations oMN; = 8 and 10 lattices should then allow
an analysis of cut-off effects systematically in dynamgiatulations that also include the charm
guark sector.

To control the E0S at these high temperatures is computdlydmghly demanding. As is ob-
vious from the left panel of Fig. 2, the signal is an order ofmigude smaller here than close to the
transition region. Nonetheless, it is feasible to calauthe EoS on a lattice with temporal extent
N; = 10 at four temperatures in the rangk X T < 4T, to establish the temperature dependence
of (¢ —3p). Combining such a calculation with results obtained ondest with temporal extent
N; = 6 and 8 will permit a controlled extrapolation to the continulimit, where systematic errors
will be below the 1% level. Overall errors will then be enlyreontrolled by the statistical error
that can be achieved. Based on the experience with currentagion parameters it is conceivable
that errors below 5% can be reached (for 3p). We estimate a cost of about 150 TF-y.

2.4 Equation of state at nonzero density

Heavy ion collisions occur in a baryon-rich environmentandas lattice simulations are naturally
suited for zero baryon densitye. zero baryon chemical potential. For technical reasonstire
simulation at nonzero density and appropriately largeckatvolume is extremely difficult. To
reach a small, nonzero baryon number density, one constiuetTaylor series expansion in the
chemical potential [22]. The coefficients of the series at@uated in a standard simulation at
zero chemical potential. This method is effective for tHatreely low baryon number densities of
heavy ion collisions. As more terms in the Taylor are cal@dait becomes possible to push to
higher chemical potential.

Upcoming low energy runs at RHIC will achieve higher bary@msity. Our goal is to de-
termine the equation of state at the relevant densities t@&€@racy in 2+ 1 flavor QCD. The
procedure for extending the equation of state to nonzermuda potential by means of a Taylor
expansion is well developed [22, 23, 24]. Typically, one kgodirectly with the pressure. How-
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ever, to determine the EoS at fixed entropy per baryon, asniésled to describe the expanding
dense matter created in heavy ion collisions, one also hadaolate Taylor expansion coefficients
for the energy and entropy densities. This requires goott@loover the temperature dependence
of the expansion coefficients for the pressure.

The state of the art of such calculations is given in Fig.gh). Coefficients of the Taylor ex-
pansion of the pressure are constructed from expectatloayvaf products of quark loop operators
on the equilibrium, zero density ensemble. Current catmria have been carried to sixth order
for two light quark flavors. Algebraic expressions for theffiwients become rapidly complicated
at higher order. Fortunately, the coding at any high ordarmautomated.

The calculation reuses the lattices generated in the egqueattstate study. It involves a large set
of inversions of the fermion matrix with different randonating vectors. The number of random
vectors needed to reach comparable statistical error fierdiit orders\ of the Taylor expansion
grows exponentiallyi.e. roughly like . Moreover, the computational effort per set of random
vectors increases approximately a8M The overall computational effort thus rises liké.6

The main domain of interest here is the temperature regienTc(Yq = 0). This also is the
computationally most difficult region. Based on currentdgs on lattices with temporal extent
N; = 4 we estimate the resources needed to calculate the expaupsio 8th order with an accuracy
of 10% and add the effort required to reach 20% accuracy @i €th order coefficient. The latter
would automatically imply that the 8th order coefficient i&@ined with an accuracy of about 3%.
As errors of these coefficients are strongly correlated hadstuare root of ratios of subsequent
coefficients is needed to estimate the radius of convergefrite Taylor series this suffices to get
estimates for the convergence radius with a statistical efr10%.

A reasonable strategy would be to perform an analysis uph@®&ter for four temperature
values belowT¢(pg = 0), and add one 10th order calculation at the estimated chitadat tem-
perature to this. The 8th order calculations would requiveua 150 TF-y and the single 10th
order calculation requires 340 TF-y. The latter would ber fiimes more expensive, if one also
aims at a 10% error on the expansion coefficient,a 5% error on the estimate for the radius of
convergence and hence the location of the chiral criticadtpo the QCD phase diagram.

3 Thephasediagram of strongly interacting matter

3.1 Phaseboundary at zero baryon number density

It is now widely accepted that at physical quark masses amul lzaryon density the transition
in QCD from hadronic matter to a quark plasma is a rapid, batydic crossover, rather than a
phase transition. At other values of the quark masses amuhaeno baryon number density there
are phase boundaries as indicated in the left panel of Fio#example, in the scenario of this
figure, as the light quark mass is lowered toward the left ftbenphysical point, a critical line is
encountered. On this line we get a genuine high temperahasegtransition with critical behavior.
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Figure 4: Left panel: sketch of the expected phase bourglatieero chemical potential as a
function of degenerate up and down quark masses. The phypsicd is plotted as a dot in the
crossover region. To the left and below the 2nd oi&l@) boundary a high temperature first order
phase transition occurs. Right panel: result of an actualsumement of a portion of the 2nd order
Z(2) phase boundary from Ref. [25]. The axes give bare quark massattice units and the blue
cross marks the physical point.

When a strange quark is present, that critical line may oatar nonzero light quark mass. For
light quark masses below that line, the high temperatureghransition is first order.

This phase boundary has been mapped out by de Forcrand difs&hion rather coarse
lattices (\N; = 4) with unimproved staggered fermions [25] as shown in thktrpanel of Fig. 4. It
is well known that lattice artifacts have a strong influenoetfte location of the phase boundary
[26, 27]. Thus it is important to push to smaller lattice Spgand explore more systematically
the influence of explicit chiral symmetry on the the tramsitparameters.

Clearly, what is needed is a systematic characterizatiagheophase boundary with improved
staggered fermions, proceeding frodp= 4 toN; = 6. This should be done at about ten different
sets of quark mass valuésy,q, ms), as in the unimproved example of Fig. 4. We estimate the cost
to be about 200 TF-y.

The sensitivity of these results to the chiral sector of Q@Duwd be studied by repeating the
analysis at a few selected parameter $eig, ms) with a chiral fermion formulation of QCD,
namely the domain wall fermion method. Its high computatl@wost has prevented us from using
it to characterize the phase boundary. However, with patasesources it will be possible to do
so. It will be feasible to carry out such simulations at |€astthree-degenerate-flavor QCDe.
with ms = myg. To carry out such a simulation with all three quark massesletp 1/20 of the
physical strange quark mass on & 4810 lattice at_s = 32 would require 40 TF-y.



3.2 Soft plasma modes at the transition

Soft (massless) modes in the theory play an important ralleeasecond order phase transitions.
They may even dominate the evolution of the plasma at thespdratures. These modes can be
studied at the same time we explore the phase boundary.

3.3 Phaseboundary at nonzero baryon number density

At small, possibly even physical values of the strange quaaks, the phase boundary occurs at
nonzero light quark mass as indicated by #&) line in Fig. 4. What happens to this line as the
baryon number density is increased? Does it move toward higsigal point or away from it?
These two scenarios are sketched in Fig. 5. In the scenaribeoleft, as the chemical potential
is increased at fixed physical quark mass, a critical phasadary is encountered, beyond which
the high temperature phase transition is first order.

Critical behavior would give rise to observable effects. thosgly first order phase transition
would have dramatic observable effects, including a phegaration and metastable states. Which
of the two scenarios in Fig. 5 is correct? A large experimigmagram at RHIC and a new heavy
ion facility in Europe (FAIR) will be devoted to this questioGiving firm answers to this question
through lattice calculations can have a tremendous impatttefinal layout of these experiments.

A set of statistical quantities called “Binder cumulantsgasure fluctuations at the transition
temperature and help to distinguish a crossover from a gemhase transition. De Forcrand and
Philipsen have shown that simulations at imaginary chelnpiotential are helpful in determining
the curvature of the critical surface [25]. Introducing axpero imaginary chemical potential is
expensive. Itrequires generating a new set of gauge coafigas for every simulation value of the
imaginary chemical potential. A Taylor expansion of thed&ncumulants is also effective. The
Taylor coefficients cost more to calculate. For each paranset (n,4, ms) at which this analysis
is to be performed, the computational effort discussed enpifevious section would be doubled.
Even so, the net expense is far less, since it is not necetssgenerate a new ensemble of gauge
configurations. We simply reuse the ones discussed in tivéopieesection. Doing this analysis for
only every second seir{,q4, ms) of quark masses should give a fair picture of the curvatfitee
critical surface. This calculation will thus require abdg0 TF-y.

4 Structureof the QGP

4.1 In-medium properties of hadrons

Deconfinement implies the dissolution of hadrons into theistituents. Thus one would expect
that an experimental signal for deconfinement in heavy idlisans is the disappearance of the
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Figure 5: Two possible alignments of the chiral criticalfaoe at low chemical potential from
[25]. Left: the scenario permitting a first order phase titams at high densities and temperatures.
Right: the scenario allowing only a crossover.

charmonium and bottomonium peaks in dilepton producti@h [Pattice simulations and the anal-
ysis of experimental measurements suggest, however, ddabhic matter is strongly interacting
at temperatures well abovg. Consequently quarkonium production is suppressed tor@edigat
depends on temperature [29, 30, 31].

A major puzzle from RHIC experiments is the large degree dectiity, i.e. large flow. If
this happens because the system is thermalized to a goaakapption, the degree of quarkonium
suppression should provide an estimate for the temperagboréar, relatively little is known about
guarkonium properties at nonzero temperature; therefatege information is crucial. If the
system is locally thermalized, it should have a very low essty, i.e very small mean free path to
produce the observed flow. Furthermore, recent experirhezgalts from RHIC on open charm
production indicate that even heavy quarks have a small fineampath. Thus estimating the heavy
quark diffusion is also important.

Lattice simulations provide an indirect means for deternghe thermal suppression of quarko-
nium production and for determining transport coefficiefitse calculation involves measuring the
imaginary time correlation function of the appropriate\neguark currentl(t,x, T) and deducing
from it the real-time spectral functigm(w, p, T). The choice of current (scalar, pseudoscalar, vec-
tor, etc.) determines the channel of interest. Dileptoaesraire obtained from the electromagnetic
current correlator. The measured correlator has the gidioena

G(t,p,T) = /d3xexp(ip-x)(J(t,x,T)J(O,O,T)). )

Deriving the spectral functions from measurements of ttieéacorrelators is difficult. The lattice
correlatorG(t, p, T) is known on a discrete set of imaginary time valtiespatial momenta, and
temperaturd’, whereas the unknown spectral functp(fw, p, T) has support, in principle, for all
real frequencies). The Euclidean correlator is related to the spectral fomctinrough

® dwcosHw(t —1/2T)]
o 2m  sinh(w/2T)

G(t,p,T) = p(w,p,T). (2)
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Peaks at nonzero frequency pncorrespond to plasma excitations. In principle transpoetffc
cients are obtained from widths of peakginear zero frequenay. For example, the light quark
vector current correlator measures the electric condtye{®2, 33], and the heavy quark vector
current correlator measures the heavy quark diffusionficterit. For light quarks this method
is difficult in practice, since the transport contributicar® not easily separated from the reso-
nance contributions. For heavy quarks, however, the sglesgtparation is much easier and recent
promising attempts exploit this [34]. The heavy quark difin coefficient is indirectly related to
the shear viscosity.

To extract information aboyt(w, p, T) from lattice measurements, it is common to impose
additional constraints, either from model assumptionsutiite spectral function or from addi-
tional conditions, as in, for example, the popular maximumnaoy method, which minimizes the
deviation of the predicted spectral function from a fedessg reference model. Clearly, the more
imaginary time values at which the correlator is known and the more precisely theetator
is known, the less one must depend on additional constraltperience in similar condensed
matter physics applications suggests that to obtain palgigseful results requires several dozen
imaginary time values.

Recent lattice calculations for a pure gluon plasma sudgbasthe charmonium signal persists
to 1.5T; or higher [30, 31]. Figure 6 shows results of a recent catmrig31] including error bars.
These results were obtained on anisotropic lattices witto ® imaginary time values.
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Figure 6: Spectral function for thg. correlator from [31]. The error bars indicate the uncettain
in the determination of the features of the specral function

There is clearly room for improvement. We need calculatisitk of the order of 100 or more
points. For example, to carry out a quenched simulation iso&mopic 128 x N; lattices at seven
temperatures would cost 15 TF-y. A companion simulation&hdN; lattices with both light and
strange quarks included in the ensemble would cost 100 TF-y.
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5 Conclusion

The advent of petaflops-scale computing promises dramaitis g our understanding of the prop-
erties of strongly interacting matter at high temperatamed densities. We have described a pro-
gram of lattice calculations that will (1) allow us to deténm the equation of state of strongly
interacting matter to an accuracy of 5%, (2) locate theaaitsurface of the QCD phase diagram
at zero baryon density and predict its curvature as the baggmsity is increased, (3) advance
our understanding of the structure of the quark-gluon ptaamd (4) determine some key trans-
port coefficients. The first goal will provide essential jdahput for hydrodynamical modeling of
heavy ion collisions, the second and third could represgmtantial breakthrough by moving us
from a qualitative to a quantitative understanding of thagghdiagram and of the survivability of
hadrons at high temperature, and the fourth and most arabigoal could very well give us the
first reliable lattice result for a transport coefficient bétquark-gluon plasma.

Acknowledgements. We thank Carleton DeTar, Frithjof Karsch and Robert Mawhkinfor
their contributions to this paper.

Project lattice temps| quark | trajecs| cost
masses (TF-y)
EoS:p=0,T < 0.95T; 48 x 12 7 2 100,000 35
EoS:u=0,T < 0.95T, 48* 7 2 25,000 50
EoS:u=0, 095T. < T < 1.05T; 48° x 10 5 2 100,000 25
EoS:u=0, 095T; < T < 1.05T¢ 48* 5 2 25,000 50
EoS:u=0, ZT. < T < 4T, 64° x 10 4 2 100,000 50
EoS:u=0, ZT. < T < 4T, 64 4 2 25,000 100
EoS DWF:u=0, 0.95T < T < 1.05T | 48%x 10x 32 4 1 50,000 100
EoS:u> 0T < 0.95T; 8th order 32 x8 4 1 50,000 150
EoS:u> 0T < 0.95T 10th order 32 x8 1 1 50,000/ 340
phase boundary =0 32X x6 4 10 10,000 200
phase boundary = 0, DWF 48° x 10x 32 4 4 10,000 40
phase boundany > 0 32 x6 4 4 10,000/ 100
spectral function, quenched 128 x N; 7 1 10,000 15
spectral function, dynamical 48 x N; 7 1 10,000 100

Table 1. Summary of simulation parameters and cost est@nafiost estimates are based on
current experience &; = 6 and 8. The computational effort is assumed to scale withedsong
lattice spacing as—1! with quark masses fixed in physical units. Simulations ledhgl= 0 are

at zero quark number density. Simulations labgled O imply a Taylor expansion in chemical
potential to reach small nonzero densities. Temperaturgesaare expressed in termsTgf the
relevant crossover temperature. The parameter “trajeesisores the size of the statistical sample
needed. The lattice dimension for the domain wall fermiomusations (DWF) includes the “fifth
dimension’Lg parameter.
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